[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
MATH: factoring, # of bits
-----BEGIN PGP SIGNED MESSAGE-----
>First, we need an equation that tell us how difficult it is, in # of
>operations, to factor a number of N bits. eg: N_ops(N) = # of
>operations it will take.
I think the fastest method that anyone admits to, by Odzyklo
(spelling?), has an order of magnitude defined by:
e^(sqrt(ln(x) ln(ln(x))))
I've been dusting off my Mathematica skills working on the crypto
techniques Matt posts :-) so it looks like this in Mathematica:
f[x_] := N[Exp[Sqrt[Log[x] Log[Log[x]]]]]
x in bits difficulty
200 2.27 E11
384 5.54 E16 <- PGP casual
512 6.69 E19 <- PGP commercial
664 1.18 E23
1000 1.75 E29
1024 4.42 E29 <- PGP military
1500 8.11 E36
2000 3.11 E43
3000 5.49 E54
4000 2.44 E64
6000 7.06 E80
8000 8.99 E94
I don't know how many seconds until the end of the universe, but I
think you'll be covered using an 8000 bit key :-)
-----BEGIN PGP SIGNATURE-----
Version: 2.3a
iQCVAgUBLMbFXYOA7OpLWtYzAQEwrwP9G60hCktxcj7MwkOV2H7QPQ1+i+j5ceTK
DEcj74ZFZdsp1vouMxtsN+zvqkdy1+DTzNUuXusWKhogDLFEPTuASZD3tcFgkoUT
Uk0B805mJi/gfiBa7+CBWHgjF0T7NSZe1lTjqfru1u+XeU/7iAq+erU0ojydL/xi
tqBAZZg3gEs=
=wkBt
-----END PGP SIGNATURE-----