[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: 2047 bit keys in PGP
From: Cedric Tefft <[email protected]>
Date: Thu, 04 Jan 96 14:12:00 PST
>And they strongly imply that brute-force attacks against 256-bit
>keys will be infeasible until computers are built from something
>other than matter and occupy something other than space."
Hmmm... Well, the 384-bit Blacknet PGP key was cracked in just a
few months. How?
Factoring a 384-bit number is not equivalent to searching a 384-bit
keyspace. Consider that there are 78498 primes less than 1000000.
This means that you can do a brute force search of a keyspace of under
17-bits to find a prime factor of any composite number less than
1000000000000 -- a bit under 40 bits. I've done this to verify the
results of an implementation of the Rabin-Miller primality test on
relatively small numbers. I'm not sure how many primes there are with
192 or fewer bits, but it's far fewer than 2^384.
There are better techniques around for factoring large numbers than
this sort of brute force testing. While I didn't follow the thread
very closely, they probably used the quadratic sieve or number field
sieve algorithm. See Schneier's _Applied_Cryptography_ for more on
factoring, including references to more detailed works.
--
Rick Busdiecker Please do not send electronic junk mail!
net: [email protected] or [email protected] PGP Public Key: 0xDBD9994D
www: http://www.cs.cmu.edu/afs/cs.cmu.edu/user/rfb/http/home.html
send mail, subject "send index" for mailbot info, "send pgp key" gets my key
A `hacker' is one who writes code. Breaking into systems is `cracking'.