[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: Redlining
E. Allen Smith wrote:
> >> The third topic is that one commonly applied idea used by the
> >> proponents of absolute equality is that found in Rawls' _Theory of
> >> Justice_, under which the just outcome is said to be found by a group
> >> of people who do not know what situation they will be in. (This is
> >> a vast oversimplification of the book(s) in question, which upon
> >> closer examination may realize the idea I am about to write down.)
> >> The simplistic conclusion is that everyone will want everything to be
> >> the same, since any individual might be in a bad or good situation. But
> >> if you have a choice between 49 dollars and a 50/50 chance of 0 or 100
> >> dollars, you should take the latter. In other words, a situation in
>
> >Not necessarily.
>
> With the exception of needing <=49$ to live, under what conditions
> would the former choice be better than the latter choice?
A good question. It is based on the theory that every person has a
"utility" function in their mind. This function determines the "worth"
of money and worthiness of risk.
If that function as a function of income is strictly concave
^
U|
|
| _-
| ,~
| ,'
| .~
| /
|/
||
+------------------------------------> money
then the utility of your gamble would be
U(gamble) == 1/2 * U(0) + 1/2 * U(100).
By definition of concavity, it is less than utility of $50.
Whether it would be more or less than the utility of $49, depends
on a consumer, but it may well be that some people will not like
this gamble.
There is much evidence that indeed most (if not all) consumers have
concave utility function.
I know that I would refuse a gamble where I could win $20,000
or get nothing, with equal probability, and prefer to get $9,999
for sure instead.
There is much theory about financial asset pricing that relies on the
assumption that utility functions are concave.
- Igor.